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ABSTRACT 

Dilute nitride alloys provide a powerful tool for engi­
neering the band gap and lattice constant of III-V al­
loys. However, nitrogen degrades the performance of 
GaAs solar cells.  This project seeks to understand 
and demonstrate the limits of performance of GaInNAs 
alloys by (a) correlating deep-level transient spectro­
scopy (DLTS) data with device performance and (b) 
using molecular beam epitaxy (MBE) to reduce 
background impurity concentrations.  

1. Objectives 
The Solar Program seeks to develop technologies 

that can provide cost-effective electricity generation. 
One strategy to reduce cost is to use concentrating 

cells is complicated.  We observed that the DLTS 
spectra were greatly simplified by the use of doped 
active layers. Indeed, growth conditions were used 
that resulted in only one dominant feature in the DLTS 
spectra.  GaAs-GaNAs junctions were studied to 
ensure that defects were observed on only one side of 
the junction.1-5 

The dark currents of GaAs/GaNAs n-p diodes (with 
p-type GaNAs active layers) correlated with the 
observation of an electron trap (Fig. 1). This 
correlation does not prove a causal relationship, but 
the decrease of the open-circuit voltage is semi– 
quantitatively explained by a reduction in the electron 
quasi-Fermi level by the electron trap (Fig. 2).1 
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optics to focus the sunlight on small, high-efficiency 
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1.0 

0.5 

0.0 

) 2 

highest efficiency (39%) of any technology and have 
the theoretical potential to achieve efficiencies 
equivalent to or exceeding all other approaches. Dilute 
nitride materials have demonstrated a range of band C
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gaps, providing a possible pathway to higher-efficiency 
multijunction cells.  The objective of this project is to -0.5 

explore the potential and limitations of the dilute nitride 
alloys for solar cells, especially Ga1-3xIn3xNxAs1-x with a 
band gap of 0.9-1.3 eV. 

2. Technical Approach 
2.1 Correlation of Device Performance with DLTS 

DLTS measurements of GaInNAs alloys show 
numerous features, implying that these alloys contain 
many defects.  Here, we reduce the complexity of the 1.0 
DLTS spectra and correlate the data with device per­
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Fig. 1.  (a) Dark I-V curves comparing GaNxAs1-x (x < 0.1%) 
and GaAs diodes. (b) DLTS data for GaNxAs1-x samples with 
x < 1.2%.  The GaAs scans (dashed lines) are offset for 
clarity; the height of the peak for the GaNxAs1-x samples 

1(indicating trap concentration) increased with x (see inset).
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Fig. 2. Open-circuit voltage as a function of band gap for 
GaAs (squares) and Ga(In)NAs solar cells.  The solid line 
shows the unity slope expected for the open-circuit voltage if 
it followed the band gap; the dashed line shows the semi­

1quantitative model.

The study of n-type GaAs/GaNAs diodes showed a 
similar electron trap.3,4  The concentration of electron 
traps was observed to increase with doping for both 
the p-type and n-type GaNAs. Much work remains to 
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formance to determine which of the DLTS features 
may be of importance. 
2.2 Achievement of High-Photocurrent GaInNAs Cell 

The minority-carrier diffusion lengths of p-type 1-eV 
GaInNAs are too short to measure, and, thus, cannot 
be optimized directly.  Instead, GaInNAs solar cells are 
dominated by field-aided collection that is correlated 
with low background carrier concentration.  GaInNAs 
grown using a p-i-n structure with wide depletion 
widths (usually) shows high photocurrents. We pursue 
MBE as a pathway to lower the background carrier 
concentrations and increase the photocurrent. 

3. Results and Accomplishments 
3.1 Correlation of DLTS Data and Device Performance 

Although undoped dilute nitride solar cells usually 
outperform doped cells due to enhanced field-aided 
collection, the interpretation of DLTS spectra of p-i-n 
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prove the importance of the observed electron trap, 
identify its origin, and determine the extent to which its 
effects can be reduced.   
3.2 High Photocurrent GaInNAs Solar Cells 

The photocurrent of dilute-nitride solar cells 
correlates with the depletion width.  Unfortunately, 
GaInNAs alloys grown by metal-organic chemical 
vapor deposition have high background carrier 
concentrations (and, hence,  low depletion widths).  In 
FY2004, we used MBE growth to demonstrate that 
wide depletion widths resulted in much higher 
photocurrents for dilute nitrides (Fig. 3),7,8 as expected 
from our analysis of the field-region collection.6 

1.0 

Further system modifications are needed to 
sufficiently control the growth process in order to 
consistently achieve wide depletion widths. Although 
we have not yet achieved the widest depletion widths 
for 1 eV alloys, we have reason to believe that high 
photocurrents are achievable.   

Unfortunately, the cells that show high photocurrents 
do not show GaAs-like photovoltages.  This may imply 
that the electron traps discussed earlier are not the 
only defect affecting the photovoltage in GaInNAs.  If 
low carrier concentrations do indeed reduce the 
density of electron traps (without a corresponding 
increase in photovoltage), there must be more 
problems left to be uncovered.  Thus, we conclude that 
high photocurrents are likely to be achieved, but it is 
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unlikely that high photovoltages will ever be realized.   0.8 

0.6 4. Conclusions 
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We observe electron traps in GaNAs alloys and 
0.4 correlate them with device performance.  MBE growth 
0.2 serves to reduce the background doping to provide 

improved photocurrents as long as all contaminants, 
0.0 including calcium, are controlled.      
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performed under DOE contract DE-AC36-99-GO10337.  
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It appears that the lower carbon and hydrogen 
concentrations associated with MBE growth allow the 
wide depletion widths to be obtained.  However, the 
removal of carbon and hydrogen, though a necessary 
condition, is not sufficient to achieve the wide 
depletion widths.  Other unintentional dopants and 
charged defects have the potential to reduce the 
depletion width.  This year we discovered that calcium 
can be introduced into GaInNAs from surface 
contamination of the GaAs wafer.9  An example of the 
correlation between unintentional calcium incorpora­
tion and observed background acceptor concentration 
is shown in Fig. 4. 
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